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O. Introduction 

This is the third part of the text devoted to an infinite dimensional geometry of a 

quantum field theory of strings (for previous ones see Refs. [ 1,2] ). This part concerns 
an infinite dimensional geometry, which appears in the theory of second quantized free 

strings, as well as the first one. An origin of this article lies in some very crucial detail of 
the theory, which is known under the title of W-symmetries. The algebraic aspects of W- 

symmetries, somewhat cumbersome and mysterious at the beginning [ 3 ], were recently 

clarified by B.A. Khesin, V.Yu. Ovsienko, A.O. Radul et al. [4-10].  Moreover, a simple 
geometric interpretation of them was given by J.-L. Gervais and Y. Matsuo [ 1 1 ]. It 
seems that the cruciality of W-symmetries to the theory of second quantized free strings 

lies in the fact that W-"reparametrizations" of strings, which are considered, may be not 

obligatory global in the loop space (i.e. the same for all strings independently of their 
position in a target space) but, in some sense, local, i.e. depend in some natural way on 

an embedding of the string into the target space. One may say that such transformations 
are related not only to the intrinsic but also extrinsic geometry of a string. A class of 

the most interesting transformations of this kind, which are related to a certain complex 
analog of a classical Frenet theory of curve invariants [ 12], was described by J.-L. 

Gervais and Y. Matsuo as classical W-transformations. Such transformations of both 

internal and external degrees of freedom of a string may be considered hidden ones 
with respect to the standard conformal symmetries. So a natural question arises: how 

the process of the geometric quantization of a string changes on account of these hidden 

symmetries. From the mathematical point of view it may be considered to be a problem 

of an "induction" of the quantization process directed by a considered symmetry algebra 
to one directed by its extension. So the solution of this problem (reproduced from 
a typical pattern for this partial infinite dimensional case of the quantum field theory 

of free strings, which we consider) should produce a lot of new geometric material, 
completing a general picture, which was drawn in [ 1 ], with new intriguing details and 
nuances. 

This opinion is also confirmed by the fact that Wo~-symmetries are very deeply 
related to the group of area-preserving diffeomorphisms of a torus. This group, the 

corresponding Lie algebra, its deformations and central extensions, being the main 
objects of a certain development of string theory and membrane theory, produce the 
next scope of infinite dimensional objects after that of the Virasoro algebra. So we may 
consider the geometric material, which will be discussed in this paper, as a possible 
introduction to the transition from the careful consideration of the infinite dimensional 
geometry of objects from the "Virasoro family", which was begun by A.A. Kirillov and 
the author in [ 13] and summarized partially in [14,1,2] (see also references therein) 
to a systematic treatment of geometric material, concerning objects related to the group 
of symplectomorphisms of a torus. 

Such a treatment is supposed to be presented in one of the forthcoming publications. 
In the aspect of the applications of our geometric material we follow the general 

ideology of A.Yu. Morozov, formulated in [ 15]. He proposed to handle string theory 
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not as a partial physical theory describing some narrow class of  real phenomena but as 

one of the universal theories, whose final and, it seems, rather wide area of  applications 

is not completely understood now. It is possible that some new applications of  certain 
aspects of  the string theory (and of  an infinite dimensional geometry related to it) will 

be found during an interdisciplinary "toy-program" of investigating the peculiarities of  
human vision (in particular, of  color perception) in artificial interactive computer graphic 
systems, formulated by the author in [ 16], the results of  which may be important for the 
understanding of  various processes in natural interactive (sensorial and visual) systems. 
Hence, our presentation is maximally mathematical and avoids many technical aspects, 

which are crucial for some applications; instead of that we prefer to specially point out 

a general mathematical meaning of our constructions. 

1. Symplectomorphisms (area-preserving transformations) of  a torus, differential 
operators on a circle and W-algebras 

1.1. Groups and algebras 

In this subsection we discuss 
- the groups Symp(ql'2), Sympe(T  2) and Sympo(ql "2) of  symplectomorphisms of  a 

torus ql "2 and their Lie algebras Ham(qI "2) and Hamo(qF 2) of  a Hamiltonian and 

strictly Hamiltonian vector field on a torus; 
- the Poisson algebras 5t~ (qi'2), UC(T*(SI)  ) and .Y'c (1~ 2) of  functions on torus, cylin- 

der and plane, their deformations and central extensions. 
Let (qI "2, o9) be a two-dimensional torus with a fixed 2-form (a volume form) o9 on 

it. Let Symp(qr2,o~) be a group of symplectomorphisms of a torus ('7 2, o9), i.e. all 
diffeomorphisms ~r of  "]I" 2 such that ~,o9 = o9 [ 17]. So symplectomorphisms of a torus 

are just its area-preserving transformations. 
It may be easily shown that all groups Symp(ql'2,og) are isomorphic. Indeed, let 

us identify a torus (ql "2, o9) with the quotient R2/F,  where the plane R 2 with a fixed 

coordinate system (p ,q)  possesses a canonical 2-form dp A dq, F is a certain flee 
lattice on R 2, i.e. a set Z a  + Zb, where a and b are two independent vectors on the 

plane. The symplectomorphisms of a torus may be identified with the classes mod F of 
functions f : R 2 ~ R 2, which obey some conditions. The expression rood F means that 

two functions f l  and f2  are called equivalent iff f l  ( x )  - f 2 ( x )  C F for all x from 
IK 2. It should be mentioned that in the coordinate form a function f is represented as 

a pair ( f p , f q )  of functions fp = f p ( p , q )  and fq = fq (p ,q ) .  The conditions, that a 

function f should satisfy, are the following ones: 
(i) The periodicity condition: f ( x + ma + rib) = f ( x ) + m~ +nb  for all x from R e, 

where fi and b is a pair of  generators of  F, i.e. fi = A(a) ,  b = A(b) ,  for some 
transformation A from the group A u t ( / ' ) ,  isomorphic to SL(2,  Z) ;  

(ii) The normalization of  Jacobian condition: D f / D x  = det O(fp, f q ) / 9 ( p ,  q) = 1. 
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The last determinant (Jacobian) is invariant under all linear transformations of  a plane 
~2. Since for any two free lattices/"1 and/"2, there exists a linear transformation y of  R 2 

such that/"2 = Y(/"I ), the groups of  symplectomorphisms of •2//"1 and •2//"2 may be 
identified. So instead of  the notation Symp('/I "2, w) for a group of symplectomorphisms 
of  a torus we shall use the simpler notation Symp('lI'2). 

It should be mentioned that the group Symp(qF 2) is not connected. Let us denote 
the component  of  the identity of  this group by Sympe(qr2). Of  course, Sympe('li "2) is a 

normal subgroup in Symp(qI "2) and therefore we have the following exact sequence: 

0 ----* S y m p e ( ~  e) ' Symp(qi '2) ~ Symp(ql'2) / Sympe(272) ,0 .  

The quotient Symp(qi '2) /Sympe(qi  "2) is isomorphic to the modular group SL(2,  Z) ,  so 

that the functions f that correspond to the elements of  Sympe(']1 "2) satisfy the periodicity 
condition of  the form f ( x + ma + nb ) = f ( x ) + ma + nb. 

The group Symp e (ql "e) has a normal subgroup Sympo (qI "2) of  symplectomorphisms ( 
such that 

1/2 z/2 

/ / f ( x + t , a + t 2 b )  d t l d t 2 = x .  

-1/2 -1/2 

The quotient Symp e (qi "2) /Sympo(qi  "2) is isomorphic to 2-dimensional compact abelian 
group ql "2, so that an exact sequence 

0 ~ SymPo('lF 2) , Sympe(qF 2) ~ ql '2 ~ 0 

exists. This exact sequence may be split, the splitting map ']I "2 ~ Sympe(ql "2) realizing 
a group ' ~2  a s  a group of  movements of  torus qr 2. 

The Lie algebra of  the group Sympe(qI '2) is an algebra of Hamiltonian vector fields 
on a torus, i.e. the fields • such that E~w = 0. It should be mentioned that after an 
identification of  a torus q1 '2 with the quotient R2//" Hamiltonian fields s ¢ on a torus may 

be also characterized as divergence free ones, i.e. vector fields ~: such that div ~: = 0. It 
follows from Cartan Theorem that s c is Hamiltonian iff d a (  = 0, where a~ = t(w. So 

the algebra Ham(ql "2) of  Hamiltonian vector fields on a torus may be identified with an 

algebra of  closed 1-forms on a torus with respect to the bracket {ce, fl} = d(ot A fl)/to. 
The Lie algebra of  the group Sympo(ql "2) is a subalgebra of  Sympe(ql'2), the algebra 

of strictly Hamiltonian vector fields, i.e. the Hamiltonian vector fields ( such that the 
corresponding 1-form a¢ is exact. The Lie algebra Hamo(ql "2) of  exact Hamiltonian 
vector fields on a torus is an ideal in the algebra Ham(ql "2) so that the following exact 
sequence 

0 ~ Ham0 (qi '2) , Ham ("~2) -----+ ~ 2  ----+ 0 

exists. The quotient ]K 2 = Ham(qr2) /Ham0(qI  "2) may be interpreted as the cohomology 
group Hl(qI'Z,]R) if we consider it the quotient of  a space of  closed 1-forms by a 
subspace of  exact ones. This exact sequence may be split. The splitting map ~2 , , 
Ham(ql "2) realizes the vector space R 2 as a certain parallelization of a torus. 
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It should be mentioned that if 1-form oq is exact then there exists a function F¢ on 

a torus such that a¢ =dF¢.  The bracket in the space of exact Hamiltonian vector fields 

induces a bracket in the space 9v(T 2) of  functions (0-forms) on a torus. The bracket in 
the space .Y'(qI "2) is of  the form {F, G} = (dF A dG)/w.  The center of  the Lie algebra 
5r(qr 2) consists of  constant functions, so it may be identified with 1-dimensional space 

R. The Lie algebra of  exact Hamiltonian vector fields on a torus is isomorphic to a 
quotient 5r(qI"2)/R. The isomorphism is realized by the exterior derivative d, which 

maps the above quotient onto the Lie algebra of  exact 1-1brms, which is isomorphic to 
Hamo(qI'2). The mapping from the algebra .T'(T 2) to the algebra Hamo(ql "2) is denoted 

by sgrad and is called "skew-gradient", so that gc = sgrad(F¢) for all exact Hamiltonian 
vector fields on a torus. It should be mentioned that the exact sequence 

0 ,  , R ,  ~ ( T  2) ,  , H a m o ( T  2) ,  , 0  

may be split. The splitting map identifies the algebra Hamo(T  2) with the subspace 

~-o(T 2) of  functions of  zero mean value. 
The bracket {., .} on the space .T'(T 2) of  functions on a torus defines Poisson algebra 

structure on it. This algebra is called the Poisson algebra of functions on a torus. It 
means that {F, GH}  = {F,G}H + G { E H }  for all functions F,G,H from 9r'(~2). In 

other words the bracket {. , .}  is a derivation of the ordinary commutative multiplication 

of functions. 
Let us represent the torus qr 2 as a quotient •2/F, where F = {(mM, nN) C R 2, m, n E 

Z ; M ,  N are fixed real positive numbers}. Then there is a canonical basis in .T~(T2),  

the complexification of  the algebra .T'(T2): em.n = D ( M ,  N) exp(imp/M) exp(inq/N), 
where it is convenient to put a normalization constant D(M, N) equal MN. The Poisson 
brackets {., .} in 5t"(ql "2) or . ~ ( T  2) have the form 

{F, G} = 3F/ Op 3G / Oq - 3G / Op 3F/ Oq 

so that [ 17 ] 

{e, ..... em',n'} = (mn' - nm')em+m,n+n,. 

The subalgebra 5eft0 (qr 2) of  .Y~c(qI "2) (the complexification of .Y'0(T 2) ) is realized as 

one spanned by generators era,,, (m, n) 4: (0 ,0 ) .  
Let us call the algebra spanned formally by era,n, the Floratos-lliopoulos algebra (see 

[ 18], where it was introduced). It should be mentioned that generators L~, k E Z of  the 
algebra CVect(S l) of  vector fields on a circle ~l satisfying the commutation relations 

[Li, Lj] = (i - j)Li+j may be expressed formally via era., as follows [18]: 

Lk = Z ~k(m)em,k' 
mEZ 

where Gk(m) = ( - 1 ) m / m  if m 4 : 0  and 0 otherwise. Of  course, in order for the 

commutation relations of  the generators Lk to hold some (rather natural) regularization 
must be used. So the Lie algebra C V e c t ( S  1 ) (more precisely, the so called Witt algebra, 
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which is spanned by the generators Lk of CVect(Sl),  but we shall not distinguish 
between them below) is realized as a certain subalgebra of the Floratos-Iliopoulos 

algebra. 

With respect to the action of the algebra CVect(S 1 ), the Floratos-Iliopoulos algebra 

may be decomposed into a sum of tensor modules of positive integer weights, the 
corresponding tensor operators will be denoted by w~ i) (i >_ 2). Note that Ln = w~ e) 

and the commutation relations between the generators w~ i) have the form 

• . ( i + j - - 2 )  [w(nO,w(, j)] = ( ( j  - 1 ) n -  ( i -  1)m)wn+ m , 

the w(~ i) themselves being defined as 

w~i) = Z G~ i' (m)ek'm' 
kCZ 

~ i )  (m)  = P i (1 /m) ,  where the polynomials Pi(x)  of degree i -  1 are connected by the 
easily calculated recurrence formulas. 

The algebra Ham0(T 2) of exact Hamiltonian vector fields on a torus admits a 

central extension Hamo(qF2), which may be defined as follows: [~c,r/]a = [~:,r/] + 

fz2 [O,~]rldp dq, where 0 is a certain Hamiltonian but not strictly Hamiltonian vector 
field on the torus. One may choose ,9 = acgp + bOq and this is a general setting up to 
trivial central extensions. So the universal central extension of Hamo(T 2) is defined by 

the following exact sequence: 

0 , H I ( T 2 , ~ )  ~ H~mo(T 2) , Hamo(T 2) ,0 ,  

where HI (T 2, ]~) is a 2-dimensional homology group of the torus with real coefficients. 
The central extension H~mo(T 2) of the Lie algebra Hamo(T 2) induces a central 

extension .~'c(T2) of the algebra .T~(~2), defined as {F,G}a = {F,G} + f~2 £ a F .  

G dp dq, so that the following exact sequence: 

0 ) C 2 ) " ~ - ' C ( T 2 )  ~ . )L- 'C(T2)  , 0 

exists. This central extension is of the following form in the basis e,,,n: 

[era,n, era,,,,] = ( mn' -- nm')em+m,,n+n, + (am + bn)6(  m + rn')6( n + n ' ) l .  

The extended Floratos-Iliopoulos algebra admits an embedding of the Virasoro algebra 
Cvir with a non-trivial central charge (one of the possible embeddings was described 
in Ref. [ 18 ] ). 

The Poisson algebra .7-<:(T 2) may be deformed into an associative algebra [ 19]. In 
the canonical basis such a deformation has the form 

em,n " em',n' = exp ( iA ( mn I - n m '  ) ) em+m',n+n'. 

The corresponding commutator algebra has the form (after a renormalization of gener- 
ators) 

1 
[era,n, em',n' ] = ~ sin(A(nm' - mn')  )em+m',n+n'. 
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So there is defined a certain deformation of  Floratos-Il iopoulos algebra, which is called 

(centerless) sine-algebra (or Fairlie-Fletcher-Zachos algebra) [20].  The corresponding 

deformation of  Ham0(qI "2) is called the Lie algebra o f  exact Hamiltonian vector fields 

on a quantum torus and is denoted by Ham0(qI'2q)(q = eia). 

The (centerless) sine algebra admits a central extension of the form 

1 1 
[ era,n, em,,,'] = -~ sin ( A (nm - mn')  ) em+m',,,+,' 

+ (am + b n ) 6 ( m  + m ' ) 3 ( n  + n ' ) l .  

The sine-algebra with a center also admits an embedding of  the Virasoro algebra Cvir: 

Lk = Z Gk(m)ek,m, 
mEZ 

where the ~k(m)  are defined by formulas, analogous to the ones of  Ref. [ 18]. 
With respect to the action of  the algebra Cvir, the sine-algebra may also be decom- 

posed into the sum of  tensor modules of  positive integer weights. The corresponding 
tensor operators will be denoted by ~ i )  (i > 2). Their commutation relations are of  

the form (for the centerless Sine-algebra): 

a p  (k+l-2p - 1 ) 
[ "n'~k~ , 'Um'(t) ] = 2_., 'aktWm+~ 

p_>0 

where 

P 
Akl = Z ( _ l ' d r i  r J  

I ~-~k_l~-~l_ 1 , 
i + j = 2 p  + I 

n! 
C. m - if m < n, C °' = 0 otherwise. 

m! (n - m) ! 

Now let us mention that all our constructions admit certain limits when one or both 
parameters N and M tend to infinity. That means that the torus becomes a cylinder 
or a plane. In the case M --, o~ the Poisson algebra 5ec(]I "2) inverts into the Poisson 

algebra ~-<:(T*S l ) o f  functions on a cylinder. There is a natural basis in f 'C(T*•l  ): 

e",'= --i e x p ( i n q / N ) p  m, in which the Poisson brackets have the form: 

{enm,e~', ' } (mn'  ,,  m+m'-, = - n m  )en+ n, . 

The embedding of  the algebra CVect(S 1 ) into .Y~Z(T*S l ) is natural: Lk ~ e I. Such an 

embedding admits in fact a one-parametric deformation Lk ~ el + ( k + 1 ) Ae ° where ,A 
is a parameter. The central extension f -C(T*Sl )  of  UC(T*S l) is of  the form 

en, } ( m n  t t ' tem+m'-I  {en,m m' = _ n m ,  ,+n' + ~ ( n  3 - n)f i (n + nt)~m,l¢~m,,11. 

The embeddings of  CVect(S 1 ) into brC(T*S l) extends to embeddings of  the Virasoro 
algebra Cvir  into f- 'C(T*Sl ). 

The Poisson algebra .UC(T*~ l ) is deformed into the algebra D o p C ( s  I ) of  differ- 

ential operators on a circle. The corresponding commutator algebra is a Lie algebra 
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DOPE.,. ] ( s  I ) of differential operators on a circle. The embeddings of CVect(S l ) in 
.T'e(T*S 1 ) induce embeddings of this algebra into DOPe.. 1 (S l ); these embeddings are 
the same if one considers a subalgebra DOP E.,. 1(51 )+ of DOP E. . 1( $1 ), the commutator 
algebra of the algebra D o p C ( s  1 )+ of differential operators on the circle S 1 without 
free terms. Both algebras DOPe.,. I (S 1 ) and DOP~.,q (~1)+ admit central extensions 
~ C  ~ C  

DOP[.,. 1 (S 1 ) and DOP[.,. 1 (S 1 )+, which are defined by the Kac-Peterson cocycle 

c( f(q)Dm, g(q)D n) - m!n! f ( m + n +  1)! f(")(q)g(m+l)(q)dq' 
Sl 

where D = O/Oq, f(m (q) = O"f(q)/Oq" [21] (see also Ref. [6]).  The embeddings 
of CVect(g l) in DOPe.. 1 (gl)  (resp. the embedding in DOPe.. 1 (S 1 )+) are extended 

~ C  
to embeddings of the Virasoro algebra Cvir in DOPI. . / (gl)  (resp. an embedding in 
~ C  

DOPI.,.] (Sl) +)" 
~ C  ~ C  

To make the construction of central extensions DOP[.,. 1 (S 1) and DOPI.,. l (S l)+ of 
DOP~..I($~) and DOP~..~(a~)+ more clear one should transit to the algebra 
PDOPe(S 1 ) of all pseudodifferential operators on a circle gl [5-8].  The commutator 
algebra PDOP~.,. 1 (a  1 ) of this algebra, the Lie algebra ofpseudodifferential operators 
on a circle, admits a central extension, which may be defined as [5] 

[A,B]c = [A,B] + c .  T r ( [ A , I o g D ] , B ] ) ,  

where 

Tr(A) = f Res(A) 
J 

dq, Res(A) = a - t ( q )  i f A = E a k ( q ) D k .  
kEZ 

The cocycle c( A, B ) = Tr( [ A, Iog D ] , B ) is the so-called Kravchenko-Khesin cocy- 
cle. The extension by the Kravchenko-Khesin cocycle being restricted to subalgebras 
DOPe.,. 1 ( Sl ) and DOPE. ,, ] (~1) -- defines extensions described above. 

In the case M, N ---+ oo the Poisson algebra brc(T 2) inverts into the Poisson algebra 
b~(IR 2) of functions on a plane IR 2. There is a natural polynomial basis in .~'c(1R2): 
emn = pmq,, in which the Poisson brackets have the form 

{em", e m' n' } = ( m n '  - nm')e m+m'-l'"+"'-m . 

The Poisson algebra brc(R 2) may be deformed into the Weyl algebra Wc(IR2). 
Polynomial elements of this algebra may be represented by differential operators on 
a line 1t{ 1, so there exists a differential operator :De corresponding to the polynomial 
P from ave(IR2), where P is a Weyl (symmetric) symbol of :Dp. The commutator 
algebra of the Weyl algebra Wc(IR 2) is the so-called Moyal algebra Moyc(•2). The 
commutator in the Moyal algebra is of the form [ 19,22] 

- 1  i . . . .  
IF'G] = Z ( - 1 ) v  E ( iT  j I (a;OqJF) (O~O'G) 

p EZ i+j=2p+ 1 
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or, in the basis e ran, 

2 8 3  

[emn,em~n ~] = ~..~"~(--I~pA2p+I~/ "~mm~nn '~'~'m+m'-2p-l'n+n'-2p-I 

p>_O 

where 

t,-.it,-.jf, j f.i A p , , = ( - 1 ) i i! j ! ~n~n'~m"~n' ? l l m  l l n  

i + j=p 

n! 
Cff' - if m < n,  

m! (n - m)! 
C~ m = 0 otherwise. 

1.2. Algebras 

In this subsection we discuss 
- the Poisson algebra .r'rC(T*~l), its central extension f-C(T*~l) and woo-algebra 

(Bakas algebra) ; 
~ C  

- the Lie algebra DOPe.. l (Sl) ,  its central extension DOPI.,.I(SI) and W~-algebras 
(Pope-Shen-Romans algebras) ; 

- the Gelfand-Dickey algebras GD, c and Radul mapping .T'(DOP~.,. I ( ~ ) * )  ~ GD~; 
- the Radul bundle RadC(.L4,) and the Lie algebra of its sections Radc (Radul alge- 

bra) ; 
- the wedge subalgebra of the Pope-Sheen-Romans Woo-algebra; 
- the associative model algebras Md (a) (sl(2, C))  for the Lie algebra sl(2, C) and their 

commutator algebras Mdl.a,!l (sl(2, C) ) - -  the model Lie algebras (or Feigin algebras) 
for sl(2, C); 

- t h e  Racah-Wigner algebras 7TI/V~)(sI(2,C)) for sl(2, C), their reductions 

~]/V~'~)(sl(2,C)) of order n and central extensions ~'W(,a)(sl(2, C))  of 
7a,.W~a) (sl(2, C) ). 
The Poisson algebra )re(S1) may be decomposed with respect to the action of 

CVect(51 ) into the sum of tensor modules of positive integer weights, the corresponding 
i - I  tensor operators w~ i) (i >_ 1) being equal to e~ so that the commutation relations 

. x .  ( i + j - 2 )  lw (i) W ( j )  ] = ( ( j  - 1)n - ( i -  l )m)w,+ m 
t -  ? t l  ' " ' t l  

hold. The algebra spanned by w~ i), n C Z, i >_ 2 is closed and is called woo-algebra (or 
Bakas algebra)  [23] as well as its central extension, which is obtained from 9g-¢ (T*~ l ). 

Now we are interested in the deformations of the woo-algebra, when bg-C(T*~ I) 
~ C  

deforms into DOPI..1(~1). Such deformations were found by C.N. Pope, X. Shen and 
L.J. Romans [24] (see also Ref. [25] ), so the corresponding algebras are called Pope-  

S h e n - R o m a n s  algebras (or Woo-algebras).  The explicit formulas for their generators 
were found by I. Bakas, B. Khesin and E. Kiritsis [8] so the embeddings of Woo-algebras 

~ C  
in DOP I .,. i(~ l ) are called Bakas-Khes in-Kir i t s i s  embeddings.  
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First of  all, let us construct, following Ref. [8] ,  the so-called Wl+~-algebra, which 
~ C  

is an algebra of  Cvir-tensor operators in DOPI. ,. j (Sl ) .  Its generators V,;~I are labelled by 

m E Z and s > 1. Their explicit form is 

V s - n ( s )  s ,--,re+s- 1 m + s - k r ~ s - k  
= O l k l ~ k _  1 Z L I  z , 

k=l 

where 

2s-3(s  - 1)! . (2s - k - 1)! 0 
B ( s ) -  ( 2 s - 3 ) ! !  ' a t -  [ ( s _ k ) ! ]  2 ; z = e x p ( i q ) ,  Dz=-~z .  

To describe commutation relations in Wl+~-algebra it is convenient to introduce some 

notations: 

, 1 f)~s' ' g~.S ( m , n ; / z ) : =  (Iz)N] s ( m , n ) ,  
2 ( l + 1 ) !  

, ( - ½  - 2/.z) k ( 3 + 2/z)k(--½(l + 1))k(--½l)k 
f { s  ( i t ) : = E  ~ . . . .  3 - - - - - ~ - -  .~ . . . .  , -  - - - 3 q - ,  ' 

k>>_o k . ( - s + ~ ) k ( - s  + ~ ) k ( s + s  - - l - - ~ ) ~  

/+1 

N S ( m , n )  : = E ( - 1 ) k C ~ + I ( 2 s -  l -  2)k[2s '  - k -  2] t+l -k  
k=0 

× [ s -  l+m]l+l_~[s  ~ -  1 + n ] k ,  

where (a)t, := a(a + 1) . . .  (a  + k -  1), [a]k := a ( a -  1) . . . ( a -  k + 1). Then 

s = _ _ _ U s + s ' - - 2  [V,~,,V s' ] ( ( s '  l ) m  (s l )n ) ,m+ n +cs(m,  l z ) S j S ( m + n )  

+ E g~'; (m,n; ,.,,s+:~'-'),'-2 /z) vm+ n 
r_>0 

where /z  = --~, 

( m + s -  1)! 2 2 ( s - 3 ) [ ( s -  1)! ] 2 
Cs(m;-½) = c .  ( m - s ) !  ( 2 s - 1 ) ! ! ( 2 s - 3 ) ! ! '  

The Wl+~-algebra is not a deformation of  Bakas algebra because it contains tensor 

operators of  upper index 1. To construct the correct deformation (which is the "right" 
W~-algebra) one should transform the generators V.~ in the following manner. Let us 

introduce new generators W;~, (m C Z, s _> 2) by the formulas 

B(s) ~-~l(_ 1 ) t ( 2 s - 2 1 - 1 )  ( m + s - 1 ) !  s-~ 
Ws' : vs + ~ -  I B -~- -  -i-) ( m + s - l - l ) ! V/" 

k=l 

or, explicitly, 

B(s )  s-I 
w;;- ] J k t . ~ k _  1 Z I J  z , 

k=l  
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where /3~ = ( 2 s -  k -  1 ) ! / ( s -  k)! (s - k -  1)!, i.e. the W~o-algebra is realized in 
DOpC..i (~l)+. The commutation relations in W~o-algebra have the form 

[ ~ , ,  W~'] = ( (s '  - 1 )m  - (s  - 1 )n)  WS,+s~ -2 + Cs(m; # )~ss ,6 (m + n) 

. . . .  , + , ' - 2 - 2 r  + g m, n;/z) w,,,~, , 
r>l  

where/,, = 0, 

c ( m + s -  1)! 2 2 ¢ " - 3 ) s ! ( s - 2 ) !  
c~(m,O) = - • 

2 ( m - s ) !  ( 2 s -  1)!! ( 2 s -  3)!!" 

Let us consider following Refs. [6,7] the affine subspace .Mn = {A C DOPC(~ 1) : 

A = D" + a , - 1  ( q ) D  n-l  + . . .  +a l  ( q ) D  +a0(q)}  in the algebra DOPC(~I). The tangent 
space Ta(.A4,) of the manifold .a,-l, at the point A may be identified with the space 
of all operators X from DOPC(S 1) of the form X = x~- l  ( q ) D  "-J + . . .  + xo(q) .  The 

corresponding cotangent space T] ( .M,)  may be identified with the space of all operators 
Y from PDOpC(~ J) of the form Y = Y-1 ( q ) D  -I  + "'" + y l - , ( q ) D  t - "  + y _ , ( q ) D - " .  

The spaces T~(.AA,) and TA(A4,,) are paired by (X, Y) = Tr(XY). 
There is defined [6,7] a tensor operator field V : T*(.A,4n) ~-+ T( .M,) ,  namely 

VA, which maps T~(.A4,) to TA(.Adn), and is defined by the following formulas: 
VA(Y) = A(YA)+ - ( A Y ) + A ,  Y C T~(.A4,,), where A ~-+ A+ is the natural projec- 
tion of PDOPC(S 1 ) to DOPC(SI). 

The space f '(A,4,)  of functions on the manifold A/l, possesses a structure of the Pois- 
son algebra via {F, G} = ( V ( d F ) , d G )  [6,7]. This Poisson algebra is called Gelfand- 

Dickey algebra and is denoted by GD, c. The center of the Gelfand-Dickey algebra GD, c 
consists of constant functions, so the exact sequence 

exists, where ~ is the quotient GD c / C .  

Let us now construct the Radul mapping from the Poisson algebra ~'(DOP~.,. k(gJ )* ) 
of the functions on the coadjoint module DOPe.. i(g 1 ) * ) of the Lie algebra DOPe.  i(g j ) 
onto the Poisson algebra GD~. Namely, let us construct a mapping 

H • DOPe.. I (Sl) ~ CVect(.Ad,,), 

where the mapping HA : DOPe,. 1 ($J) ~ TA(JVl,) is defined by the formulas [6,71 

H A ( B )  = V¢BA-~)_ ( A )  = A B  - ( A B A  - I ) + A  ; 

BEDOP~. . I (~ I ) ,  A_ =A -A+.  

It should be mentioned that 

Ker(Ha) = { C  EDOP~. . ] (~ J) : C = B A ,  A E D o p C ( • I ) } .  

We state that Im(H)  is contained in Ira(d),  where d : GDn c H CVect(.AA,). Be- 
cause Ker(d) consists of constant functions on A,4, then H realizes a homomorphism 
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of DOPe.,. 1 (S 1 ) into the Lie algebra GD-~,. Such a homomorphism can be extended 
to a homomorphism of the Poisson algebra .T'(DOP~..I(SI) *) onto the Gelfand- 
Dickey algebra GD c. Of course, one may consider a restriction of the Radul mapping 
St(DOPe..1 (Sl) *) H GD c to the Poisson subalgebra St(DOPe..] (S I )]_) of the Poisson 
algebra ~(DOpC(sI )*) ,  where DOpc(sI)+ is a subalgebra of DOpc(s  1) of differ- 
ential operators without free terms, DOPe.,.] (SI)+ is its commutator algebra, the Lie 
algebra of differential operators without free terms, and DOPe.. 1 (S1).  is the coadjoint 
module over this Lie algebra. 

Now let us construct the so-called Radul bundle and the Lie algebra of its sections 
(Radul algebra). Let us consider a trivial bundle RadC(.A4,) over .A4, with fiber 
isomorphic to DOPE.I(S1). One may define the following commutator in the space of 
its sections: if E,F  C O(RadC(AA.)) then 

[E, F I ' ( A )  := [ E ( A ) , F ( A ) ]  + V ( E A - ,  ) (F) - V(FA-I) (E ) C RadaC(.A4,), 

Vx(E(A))  = (a/Ot)E(A + tVx(A))lt_--o, A E .A4,. 

The algebra of sections of the bundle RadC(.Mn) will be called the Radul algebra 
Rad¢. As it was stated in Ref. [7] the mappings HA being glued together define a 

homomorphism of the Radul algebra Radc onto the Lie algebra GD c. 
The algebra GD c defined above is just the Gelfand-Dickey algebra GD(gl(n, C))  

for the Lie algebra gl(n ,C) .  It is more convenient to consider the Gelfand-Dickey 
algebra GD(sl(n, C))  for the Lie algebra sl(n, C). To do it one should consider the 
subspace Ad(, °) of .A4n of operators A with an-i = 0. Note that our representation may 
be considered for GD (sl (n, C) ) if one replaces DOP~.,.I (~1) by DOPe.,. 1 ( S1 ) +" 

As was remarked in Ref. [24], the generators W s, of the Pope-Shen-Romans W~- 
algebra with 1 - s _< m < s - 1 form a closed Lie algebra, which is called the wedge 
subalgebra of the W~-algebra. The generators W21, Wg, W 2 of the wedge subalgebra 
are just the generators of the Lie algebra sl(2, C). The space of the wedge subalgebra 
is identified as sl(2, C)-module with the model Modd-dim(Sl(2, C) ) of odd-dimensional 
representations of the Lie algebra sl(2, C) [26]. 

Let us analyse the algebraic structures related to the model Modd-dim(Sl(2, C))  more 
systematically. Let us consider the universal enveloping algebra b/(sl(2, C))  of the Lie 
algebra sl(2,C) and the ideal la in it, generated by K -  A, where K is a Casimir 
operator for sl(2, C) (i.e. a quadratic element of the center Z(b / ( s l (2 ,C) ) )  of the 
universal enveloping algebra b/(sl(2, C) ). The quotient /,/(sl (2, C) ) / la  supplies the 
model Modd-dim(Sl(2, C))  by a structure of an associative algebra. Such an associative 
algebra will be called the associative model algebra for the Lie algebra sl(2, C) and 
will be denoted by Md ~a) (sl(2, C) ). 

The commutator algebra Mdl.a!l(sl(2, C)) of the associative model algebra 
Md(a)(sl(2, C))  will be called the model Lie algebra for the Lie algebra sl(2,C) 
(or Feigin algebra, see Ref. [27] ). The wedge subalgebra of the Pope-Shen-Romans 
W~-algebra is just the Feigin algebra Mdl°!l(sl(2, C)).  
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Let us now consider the Racah-Wigner algebras, their reductions of finite order and 
central extensions of such reductions for the Lie algebra sl(2, C). The Racah-Wigner 
algebra 7~ld2~)(sl(2, C) )  for the Lie algebra sl(2, C) is the universal enveloping 
algebra/d(Mdl.a!l (sl(2, C ) ) )  of the model Lie algebra Mdla) I.,. (sl(2, C)) .  

Definition 1. An associative algebra 7~Wtna)(sl(2,C)) is called a reduced Racah- 
Wigner algebra of order n for the Lie algebra sl (2, C) iff 

(i) it admits a homomorphism onto Md~a)(sl(2,C));  
(ii) Tf.W~a)(sl (2, C) )  is generated by the direct sum 7rl ® ~'2 ® ' "  ® 7r._ 1 ® 7"r. of the 

first n odd-dimensional representations of sl(2, C) (this direct sum is isomorphic 
to s l (n ,C)  as sl(2, C)-module), the natural action of sl(2, C) being defined by 

ad(Trl ) ; 
(iii) 7~W}, a) (sl(2, C) ) is isomorphic as sl(2, C)-module to S (sl(n, C) ) (S'(V) is the 

symmetric algebra over V). 

Reduced Racah-Wigner algebras "F4I/V~ a) (sl(2, C) ) of order 2 with non-homogeneous 
quadratic relations were considered in Ref. [28]. It was shown that 7~W~ a' ) (sl(2, C) ) 
7~W~a2)(sl(2, C) )  for arbitrary al and a2. 

Proposition 1. For any n, there exists a reduced Racah-Wigner algebra 
~W},a)(sl(2, C) ) of finite order n for the Lie algebra sl(2, C). 

Proof Unfortunately, we do not know the direct algebraic proof of this proposition, 
which is, certainly, preferable. Let us formulate a quantum-field proof, which is based 
on the formalism of qg-conlormal field theory [28]. Namely, let us consider the set 
of qR-affine currents, whose charges form the Lie algebra sl(n,C) (or, whose com- 
ponents form a qR-affine Lie algebra) [28]. Let us consider the set of Casimir op- 
erators Ki . . . . .  K~-l and the higher spin fields W2(z) . . . . .  W"(z), which correspond 
to them in the operator algebra of qR-affine currents. The algebra, generated by the 

S - -  S - -  m components W s, (1 - s < m < s - 1; W' (z )  = ~. ,E2 W~,z ) is just the reduced 
Racah-Wigner algebra ~W~ (a) (sl (2, C) ) of order n for the Lie algebra sl (2, C), where 

/~ = ¼(q~J + 3 ) ( q ~  -I + 1).  E_] 

The non-linear structure constants of the constructed reduced Racah-Wigner algebras 
7~W}, a) (sl(2, C) )  admit a deformation by the linear structure constants of the universal 
enveloping algebra L/(sl(n, C) )  of the Lie algebra sl(n, C). One may introduce a new 
central element p and consider this deformation as a central extension of the reduced 

Racah-Wigner algebra. Such a central extension will be denoted by 7~W n (sl(n, C) ). If 

one considers the fixed value of central element p, i.e. the quotient of 7~Wn (sl(n, C) ) 
with the ideal generated by p - p0, then the limit p0 --~ ~ inverts the obtained quotient 
into the universal enveloping algebra b/(sl(n, C)) .  So one may consider the algebras 

7~W,, ( sl ( 2, C) ) to be deformations of L/( sl ( n, C) ). 
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2. Gervais-Matsuo differential W-geometry and W-symmetries of a second quan- 
tized free string 

In this paragraph we shall work with the following objects [1] (see also Refs. 

[13 ,29-31] ) :  
(i) Q (or  the dual Q * ) - - t h e  space of  external degrees of  freedom of  a string. The co- 

ordinates x~ on Q are the Taylor coefficients of  functions x u ( z ) ,  which determine 
the world-sheet of  a string in a complexified target space. 

(ii) M ( V i r ) - - t h e  space of  internal degrees of  a freedom of a string; theflag manifold 
of the Virasoro-Bott group Vir; the homogeneous space Diff+ ( ~ J ) / S  l (Diff+ (~ l )  

is the group of  diffeomorphisms of a circle S 1 preserving orientation); this space 

is identified via the Kirillov construction [ 13, Kirillov] with 

(iii) S--the class of univalent functions f ( z )  in the unit complex disc D+ (D+ = {z C 
C: Iz[ < 1}) such that f ( 0 )  = 0, f ' ( 0 )  = 1, f t ( e i t )  4: 0; the natural coordinates 

on S are coefficients ck of the Taylor expansion of  a univalent function f ( z ) :  
f ( z )  = z + C l Z  2 -t- C2Z 3 q-  " ' "  -k- C n - l Z  n + CnZ n+l  -[- "" ". 

(iv) C--the universal deformation of a complex disc with M(Vir)  as a base and with 

fibers isomorphic to D+. The coordinates on C are z, cl ,  c2 . . . . .  cn . . . . .  where ck 

are coordinates on the base and z is a coordinate in the fibers. 
(v)  M(Vir)  • Q * - - t h e  space of  both external and internal degrees of  freedom of  a 

string, the same as the bundle over M(Vir)  associated with p : C ~ M(Vir), 
whose fibers are Map(C/M(Vir); C~)*-- l inear  spaces dual to spaces of  mappings 

of  fibers of  p : C ~ M(Vir)  into C n. 

2.1. Elements of Gervais-Matsuo W-geometry 

In this subsection we discuss 
- Elements of  the Gervais-Matsuo differential W-geometry: classical Toda fields in the 

complex analogue of  Frenet theory; 
- the mapping DOPE.,.I(gl a regj+ H CVect(M(Vir)  • Q*);  

- the Gervais-Matsuo Lie quasi(pseudo)algebra G.A,t c of  classical (infinitesimal) W- 
transformations; 

- t h e  Gervais-Matsuo Poisson algebra GM~ c and the monomorphism G/VI~, 
GD(s l (n ,  C ) ) ;  

- the infinite dimensional geometry of  the flag manifold M(DO~PI...1 ( S I ) + )  _~ M(W r )  
( W ~  = ( w r )  c )  for the Lie algebra D O P I . . I ( g l ) +  or for the real form W r of  the 

Pope-Shen-Romans  W~-algebra.  
Let us consider the world-sheet of  a string x : D+ ~ C n (x  = {x u = x U ( z ) } ) .  

By using the complex version of  Frenet theory [ 12] one may introduce the associated 
mappings Grk x : D+ ~ Grk(Cn) ,  where Grk(C")  is the Grassmannian of k-dimensional 
planes in C", or the associated mapping F1 x : D+ ~ FI(Cn) ,  where F I (C  n) is the space 
of  complete flags in C n. I f  we consider the homogeneous coordinates (equivalently, 
coordinates in the projective space CIP n, then the classical Toda fields on D+ will be 
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identified with K ~ l e r  potentials of  the images of  Grk+l x ( z )  in Grk+l (C"+l ) .  

It is convenient to introduce the so-called homogeneous KP-coordinates for the 

mapping x " D+ ~ CI? ". Indeed, let us consider the functions x U ( [ z ] ) ,  [z]  = 

[z~°),z (I) = z , z  (2) . . . .  Z (") . . . .  ] such that D t z x ( [ z ] )  = c ) x ( [ z ] ) / O z  (t) and x ( [ z  1) = 
x (  z ) for z (2), z (3) . . . .  z (n) . . . .  = O, z = z(J) / z  (°~. So the homogeneous KP-coordinates 

[ z ( ° ) , z  (l~ . . . . .  z ('') ] may be regarded as coordinates in the complex projective space 
CI?" defined in the neighborhood of the world-sheet of  a string. 

Let now D O P e ( S I )  reg be a subalgebra of  D O P e ( 5  l) that consists of  operators pos- 

sessing a regular continuation to the unit complex disc D+; DOP e (S l a reg the intersection ,,+ 
of  DOPe (g  I )~eg with D O p c ( s  I )+; DOPe..  I (gl)reg and DOPe,. 1 (S 1 )~g the correspond- 

ing commutator  Lie algebras. 

It should be mentioned that DOP~ 1(51 veg .,. ,+  acts naturally by differential operators on 

the space Q*, considered as the space of sections of  a trivialized bundle over D+ with 

fibers isomorphic to C") .  One of  the results of  J.-L. Gervais and Y. Matsuo was that 
this action is linearized (i.e. becomes an action by vector fields) in KP-coordinates. 

Propos i t ion  2. The action o f  the Lie algebra DOPf.,.i (~1 J4~reg by differential operators 

on Q* (as the space o f  sections of  a trivialized bundle over D+ with fibers isomorphic 

to C") may be extended to the action on M(Vir)  • Q* (as the space o f  sections of  a 

trivialized bundle over C with fibers isomorphic to C" ) by vector fields. 

Proof  One only needs to mention that the KP-coordinate system is a homogeneous 
version of the coordinates on the universal deformation C of a complex disc D , ,  which 

are easily expressed via the standard coordinates z, Cl, c2 . . . .  c,  . . . . .  I~ 

Let us now consider more systematically the structure of the action of the Lie algebra 
]reg Q ,  DOPe. .  I (51 ,+  on by differential operators. 

It is rather reasonable, following J.-L. Gervais and Y. Matsuo, to restrict ourselves 

to consideration of  differential operators of  order less than or equal to n. It means that 
~reg of the Lie algebra we shall deal with the quotient DOPe..  I ( 51 ) +g /DOPe . .1  (51 '  >,+, 

DOPe..I  (51)+g of regular differential operators without free terms by its subalgebra 
DOP]=' l(51)~gn+, of  regular differential operators without free terms, which do not con- 
tain terms with D k (1 _< k _< n),  the commutator algebra of  the associative algebra 

t,~l -~reg of  such operators. Of  course, such a quotient is not a Lie algebra, be- DOPe ~'-~ ~>_n+l 

reg Nevertheless, cause the subaigebra DOPe. .1(5  j~reg is not an ideal in DOPe. .1(~1)+ . , I > n + l  

the exact sequence 

0 DOP~ } ( 5  ' ' r e g  ~ DOP] 2 (Sl)Y~ g 
> .,. ] > n + l  ",'] 

DOPe..1 ( ~1 ) +g/DOPe., .  1 I" ~ '  "Feg , 0 

may be split. The splitting identifies the quotientDOlff[ ",- i ( , ~  1 )+reg/DOPI ... i (~1 > , , + i t  ,~reg with 

the subspace DOPC(~3 l)+g<" of regular differential operators of  order less than or equal 
reg 

to n without free terms in the Lie algebra D O P f . . 1 ( ~  1 ~ +  . 
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.~reg foITn is in fact a Lie quasialgebra (in The object that elements of DOP¢(~lj+;_<, 
the terminology of I. Batalin [32]) or a Lie pseudoalgebra (in the terminology of 
M.V. Karasev and V.P. Maslov [33] ). Namely, the commutator of two elements of 

.~reg Q. DOpc(s1 : +;<n acting on (classical (infinitesimal) W-transformations [ 11 ] ) may 
be expressed via other elements with coefficients, which are extrinsic invariants of 

the world-sheet of a string (curvature, torsions and their derivatives). So the structure 
functions of classical (infinitesimal) W-transformations are functions on the space Q*, 
the object, on which classical (infinitesimal) W-transformations act. Therefore, classical 
(infinitesimal) W-transformations form a Lie quasi(pseudo)algebra, which will be called 
Gervais-Matsuo quasi(pseudo)algebra and will be denoted by ~.A4n c. 

It should be noted (concerning the possible construction of classical finite W-transfor- 
mations) that Lie quasi (pseudo) algebras are infinitesimal objects for Lie quasi (pseudo) - 
groups of transformations in the finite dimensional case [32,33]. Fixing a point on 
a manifold, on which the Lie quasi(pseudo)group of transformations acts, one can 
introduce a structure of a loop on the underlying space of the Lie quasi(pseudo)group. 
In our case this loop will be just the loop of the homogeneous space 

EXP(DOP~ ] ( ~ l ) + g )  / EXP(DOP~ 1(~1  ~reg • ,. .,- :_>n+l  J 

defined by EXP(DOpC(gl)~e;g_< n) to be a splitting of the exact sequence 

0 EXP(DOP~.,.] "~l'reg "~ , EXP(DOP~.,.I ($1)+ g) 

----+ EXP(DOP~..i (~; ' )+g)/EXP(DOP f. . 1 ( ~  l~reg ~ > 0 , J > n + l  :' 

via the Sabinin construction [34]. Nevertheless, the infinite dimensional groups 

• " ~,1 "~ reg EXP(DOPf..1 ( ~ 1 ) r e g )  EXP(DOP~.,.Ita )_>,+1) and 

(as we know) are not constructed and, therefore, the classical finite W-transformations 
are not introduced; so the Sabinin construction may be considered only as an explanation 
of the appearance of the Gervais-Matsuo quasi(pseudo)algebra. However, even though 
the Lie quasi(pseudo)group of classical finite W-transformations is not defined (though 
the author thinks that it is possible) and, hence, the corresponding system of isotopic 
loops on it cannot be considered, the infinitesimal objects of such loops, the so called 
Mikheev-Sabinin multialgebras [35] may be derived easily from the Gervais-Matsuo 
quasi (pseudo) algebra G.A.'I f .  

It should be mentioned that Q* is a symplectic manifold and, therefore, one may as- 
sign to the generators of the Gervais-Matsuo quasi(pseudo)algebra 0A/I~ c their Hamil- 
tonians, which are just functions of classical Toda fields. The structure of the Lie 
quasi (pseudo)algebra induces the structure of a Poisson algebra on Hamiltonians. This 
algebra will be called the Gervais-Matsuo Poisson algebra and will be denoted by 
GM f .  There exists a very simple but remarkable fact, which we prefer to formulate as 
a proposition. 
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Proposition 3. There exists a monomorphism of Poisson algebras 

2 q  I 

GM c ~ G D ( s I ( n , C ) ) .  

Therefore, the Gervais-Matsuo algebra GM, c, is just a "regular" part of the Gelfand- 
Dickey algebra GD(sl(n,  C) ). 

The significance of this monomorphism is explained by the fact that the Gervais- 
Matsuo differential W-geometry may be (at least, partially) generalized, with an arbitrao, 
Kiihler manifold as a complexified target space, because basically it depends only on 

complex Frenet theory (see [ 11,36] ), so one can construct analogues of the Gervais- 
Matsuo quasi(pseudo)algebra G2¢[c~ of classical (infinitesimal) W-transformations as 
well as of the Gervais-Matsuo Poisson algebra GMn c for an arbitrary Kiihler manifold. 

It is not less remarkable fact that the Gervais-Matsuo differential W-geometo, turned 
out to be deeply connected with Sabinin's program of "nonlinear geometric algebra" 
[37] and the Weinstein-Karasev-Maslov approach to nonlinear Poisson brackets [33]; 
so from the point of view of algebraic geometry, the Gervais-Matsuo W-geometry may 

be regarded as a penetration of nonassociative algebra into the theory of embeddings of 
algebraic curves into Kdhler varieties (this is somewhat reminiscent of Yu.I. Manin's 
book [38] ). 

ly j reg  Let us now return to our main subject. As we saw above, the subalgebra , , ~  of the 

W~-algebra, generated by V~;~, m >> 0 acts by vector fields' on the space M(Vir) - Q*. 
~ C  

Nevertheless, we want to obtain the action of the whole Wc~-algebra (or DOP I ... I (SL) ~ ) 
instead of W ~eg (or DOPe..1(5 l)+g). So we should enlarge the space of the internal 
symmetries of a string by new__degrees of freedom. What we are gol.ing to do is to 
consider the flag manifold M(DOPI . . I (S1)+)  tbr the Lie algebra DOPI , . I (S  1)+ (or, 

what is just the same, the flag manifold M ( W ~ )  of the real form W~ of the Pope- 

Shen-Romans Woo-algebra), to consider the squashed product M(W~.) • Q* and to 
justify that Woo-algebra acts on M ( W ~ )  • Q* by vector fields. To perform this program 
we need a detailed description of the flag manitold M ( w r ) .  

The flag manifold M ( W ~ )  may be defined as a symplectic leaf of the Poisson 
manifold (W~)* ,  the coadjoint module for the Lie algebra W~ (cf. [4] ). The tangent 

. ; w r e g  space of M ( W ~ )  at the initial point may be identified with the quotient W ~ /  ~ ,  so 

the flag manifold M(W r )  is an almost complex manifold. 

Proposition 4. The almost complex structure on the flag manifold M ( W ~ )  is integrable. 

Proof First of all, the almost complex structure on M ( W ~ )  is formally integrable. To 
prove that it is really integrable one needs to construct an almost complex embedding 
of M ( W ~ )  into some infinite dimensional complex manifold. The standard manifold 
for such purposes is an infinite dimensional Grassmannian, e.g. one of the subspaces in 
Woo (one of which is Wrc~ eg ). [~] 

Being the symplectic leaf of the Poisson manilbld (W.~)*, the flag space M(W~:,) 
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possesses an infinite dimensional family of symplectic structures wh,c, where c cor- 
responds to the central charge of W~ and h = (h2, h3 . . . . .  h . . . . .  ) corresponds to a 
character of  the subalgebra W~ g. Coupling with the complex structure 2-forms wh,~. 

defines an infinite dimensional family of (pseudo)K~ihler metrics on the flag manifold 
M ( W r ) .  

Each (pseudo)K~ihler metric defines a prequantization bundle E h , c ( M ( W r ) )  over 
M ( W ~ ) ,  which is a Hermitean line bundle with the action of the Lie algebra W~ by 

covariant derivatives with curvature form 2"n'tOh, c. 
The Verma modules over the Pope-Shen-Romans W~ algebra are realized in the 

Fock spaces F ( M ( W r ) , E h , c ) .  Recall that the Fock space of a pair (M ,E)  is the 

space dual to the space of sections of the bundle E* over M [ 13, Juriev]. It should be 

mentioned that Verma modules over DOPe.. 1 (S 1 ) were investigated recently by V. Kac 

and A. Radul [9]. 

2.2. W-symmetries and string field theory 

In this subsection we will discuss 
- W-symmetries of a second quantized free string (flat background): W-ghosts, W- 

differential Banks-Peskin forms, Siegel W-string fields and W-BRST-operator in them; 
- W-string Gauss-Manin connection and W-string Kostant-Blattner-Sternberg pairings; 

- geometrical non-cancellation of Bowick-Rajeev W-anomaly--absence of Bowick- 
Rajeev W-vacua and gauge-invariant Siegel W-string fields; 

- operator cancellation of Bowick-Rajeev W-anomaly--WN-algebras. 
The flag manifold M ( W ~ )  for the W-algebra W~ admits an embedding into the 

infinite dimensional analogue of the classical symmetric domain of type I [ 39]. Such an 
embedding is defined by the mapping W~ H g l ( ~ ) ,  where gl(cx~) is the Lie algebra 
of linear operators in the space .Y'(~ 1) of functions on the circle S 1. Since the infinite 

dimensional classical symmetric domain of type I admits a representation as a space of 
complex structures o n  .~u(~l ) = Map(Sl ,R)  as well as on Map(SI ,R") ,  we obtain such 

a representation for the flag manifold M ( W ~ )  too (this representation is analogous to 
one of M. Bowick and S. Rajeev for the flag manifold M(Vir) for the Virasoro-Bott 

group [40] ). Thus we have constructed the squash product M ( W ~ )  • Q*. 

Proposition 5. The mapping wre~zg H CVect(M(Vir) • Q*) is extended to the mapping 

W~ H CVect (M(W~)  • Q*). 

This proposition is a specialization of a standard fact of the theory of inductions to 
our infinite dimensional case. 

Now we should mention that the Nambu-Goto action (the K~ihler potential on Q*) 
defines the bundle ENd(Q*), which may be lifted to the bundle E N c ( M ( W ~ )  • Q*); 
this procedure defines the first cohomology class H l ( w ~ ;  (_9(M(W~) -Q*))  of the Lie 
algebra W~ with coefficients in "classical string fields" 0 ( M ( W ~ )  • Q* ) ( cf. [ 1 ], see 
also [30] ). 
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The Hermitean line bundle Eh ,c (M(W~) )  over the flag manifold M ( W ~ )  may 

be lifted to the bundle E h , c ( M ( W ~ ) .  Q*) over the space M ( W ~ )  • Q*, in which 

the action of  the Pope-Shen-Romans  algebra Woo with non-trivial central charge is 
defined. One may also involve the first cohomology class of  Woo in such an action. That 

means that one should consider the bundle Eh,c(M(W~) • Q*), the tensor product of  
Eh.,.( M( W ~ )  • Q*) and ENc( M ( W ~ )  • Q*), instead of Eh,c( M ( W ~ )  • Q*). 

• Q ) ,Eh ,c (M(W~)  • Q*)) over the pair (M(  oo) • The Fock space F ( M ( W r )  * - W r 

Q* ), E'h,c ( M ( W ~ )  • Q* ) ) is just "the configuration space for a second quantized free 
string without ghosts after accounting for W-symmetries" ( cf. [ 1 ], see also [29] ). 

Our next purpose is to introduce W-ghosts in order to consider W-differential Banks-  
Peskin forms, Siegel W-string fields, the W-BRST-operator in them and, thus, to con- 

struct "the configuration space for a second quantized free string with ghosts after 
accounting for W-symmetries" in a way analogous to that of  Ref. [ 1 ] (see also [29] ). 

Unfortunately, even the first step of this program cannot be perlbrmed. The problem 

is that one cannot construct correctly the semi-infinite forms for the Pope-Shen-Romans  
~ C  

Woo-algebra (or for DOPI. ' I (g l )  + ). So we have to restrict our geometric picture to a ti- 
nite order n. Namely, in view of  the (real) Radul mapping .Y ' ( (W~)*)  ~ GD(s l (n ,  R) ) 
one may consider the flag manifold M ( G D ( s I ( n , R ) ) )  for the Gelfand-Dickey al- 

gebra instead of  the flag manifold M(Woo) for the Woo-algebra. The flag manitold 
M ( G D ( s l ( n ,  R ) ) )  may be defined as a symplectic leaf of  the Gelfand-Dickey algebra 

G D ( s I ( n , R ) ) .  The flag manifold M ( G D ( s I ( n , R ) )  is a complex manifold as well as 
M ( W  r )  and possesses (at least, one [4] ) n-parametric family of  symplectic structures 

cob.,, where h = (h2 . . . .  h,,). Coupled with the complex structure these 2-torms define an 

n-parametric family of  (pseudo)Kahler  metrics on the flag manifold M ( G D ( s l ( n ,  II~) )) ;  
each (pseudo)Ktihler metric defines a prequantization bundle Eh.c(M(GD(sl(n, R ) ) ) )  

over M ( G D ( s l ( n ,  R)  ) ). 

Proposition 6. The mapping Woo ~ CVect( M ( W ~ )  • Q*) may be reduced to the 

mapping Woo ~ CVect ( M ( G D ( s l ( n ,  R)  ) ) • Q* ). 

Proof It is an easy consequence of the existence of the Radul mapping. [~ 

One may perform for M ( G D ( s I ( n , R ) ) )  -Q*  all geometric procedures described 

above fbr M ( W ~ )  . Q*. Namely, the bundle ENG(Q*) may be lifted to the bundle 

ENG ( M ( G D ( s l  (n, R)  ) ) .  Q* ) ; the Hermitean line bundle Eh,,.( M ( G D ( s I ( n ,  R) ) ) ) may 
be lifted to the bundle Eh,c ( M ( GD(  sl ( n, R)  ) ). Q* ) ; finally, one may consider the bundle 
E'h., ( M ( G D ( s I ( n , R ) ) )  • Q*) as the tensor product of  two previous ones. It is natural 
to consider the Fock space F ( M ( G D ( s l  (n, R) ) ) • Q*, L'h.,.( M ( G D ( s l ( n ,  R) ) ) • Q*) ) 
as "the reduced configuration space for a second quantized free string without ghosts 
after accounting for W-symmetries ". 

But before we go on to consider the corresponding ghosts, it is reasonable to consider 
the structure of  the action of  the Lie algebra W~ on M ( G D ( s l ( n , I ~ ) ) )  • Q* more 
systematically. 
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It seems that it is very convenient to restrict ourselves (as above) to consideration of 
differential operators of order less than or equal to n. It means that we shall deal with the 

~ C  1 ~ C  1 
quotient DOP[.,. 1 ( S ) + / D O P I . .  ] (~)_>n+l of the central extension of the Lie algebra 
DOPe.. 1 ($1)+ of differential operators without free terms by the central extension of 
its subalgebra DOPe.. 1 (~1) _>,+1 of differential operators without free terms, which do 
not contain terms with D k (1 < k < n). The corresponding exact sequence 

~ C  1 ~ C  
0----~ DOPI. . l (~  )_>n+J ~ DOP[.,.I(S1)+ 

~ C  1 ~ C  1 
-----~ DOP[.,.I(S )+/DOP[ . . ] (S  )>n+l -----~ 0 

may be split. The splitting map identifies the quotient with the subspace DOP e (S l ) +;_<n 
of differential operators of order less than or equal to n without free terms in the Lie 
algebra DOPe. . l (g l)+. The object that is formed by elements of DOpc( s  l)+;_<n is a 
Lie quasi (pseudo)algebra, which will be called enlarged Gervais-Matsuo quasi(pseudo)- 
algebra and will be denoted c ~'/~n;(enl)" the Gervais-Matsuo quasi(pseudo)algebra may 
be comprehended as "slightly more than one-half o f '  the enlarged Gervais-Matsuo 
quasi(pseudo)algebra. It should be mentioned that the enlarged Gervais-Matsuo quasi- 

~ c  
(pseudo)algebra is embedded in DOPI.,. 1 (S 1) + rather than in DOPE. ,.I(s 1)+ so we 
have obtained a central extension of the enlarged Gervais-Matsuo quasi (pseudo)algebra, 

~ c  
which will be denoted by G3d,;(enl ). If the enlarged Gervais-Matsuo quasi(pseudo)- 

~ c  c algebra ~.A,4n;(enl ) acts on M(GD(sI(n,  R ) ) )  • Q*, then its central extension ~.£d,;~e,l ) 
acts on the line bundles over it. 

Now we are able to introduce W-ghosts (related to the central extended enlarged 
Gervais-Matsuo quasi(pseudo)algebra), to consider the corresponding W-differential 
Banks-Peskin forms and Siegel W-fields, the W-BRST-operator in them and, thus, to 
construct "the reduced configuration space for a second quantized free string with ghosts 
after accounting for W-symmetries". Namely, W-ghosts may be identified with elements 
of the Lie quasi(pseudo)algebra c ~.A,~n;(enl ) acting on the manifold M(GD(sl(n,  R ) ) )  • 
Q* by vector fields, W-antighosts are dual 1-forms on M ( G D ( s l ( n , R ) ) ) .  Q*. W- 
differential Banks-Peskin forms are just differential forms on the manifold 
M(GD(sI(n,  R ) ) )  -Q* valued in the line bundle/)h,¢ generated by W-antighosts; semi- 
infinite W-differential Banks-Peskin forms are defined with respect to the Z-grading on 

c the Lie quasi(pseudo)algebra G.Ad,;~enl ). 
The space of W-differential Banks-Peskin forms will be denoted by 

, .  ~ 
g2Bp(M(GD(sl(n, •) ) ) • Q , Eh,c) 

and the space of semi-infinite W-differential Banks-Peskin forms by 

oss~,(M(GD(sl(n,R)))  Q ; h,c) 
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~ C  
R e m a r k  1. The Lie quasi(pseudo)algebra ~.A'~n;(enl ) a c t s  on the space 

s'2s~, ( M ( G D ( s l ( n ,  • ) ) )  • Q*; Eh,c) 

with the central charge c - 2 ( 2 n  3 - n  - l ) .  

Definition 2. 
1. Siegel W-string fields are elements of  the space dual to the space 

SI * ~ / 2 B p ( M ( G D ( s I ( n , R ) ) )  • Q ;Eh,c) 

of  semi-infinite W-differential Banks-Peskin forms. 
2. The W-BRST-operator is the operator QBRST in the space of Siegel W-string fields 

dual to the exterior covariant derivative D in the space of semi-infinite W-differential 
Banks-Peskin forms. 

R e m a r k  2. 2 2(2n 3 n 1). QBRST = 0 iff C = - - 

Let us now study the aspects related to the gauge-invariance of W-string fields in the 

sense of  Ref. [ 1 ] (see also Ref. [31 ] ). 
Namely, the space J2SB~(M(GD(sl(n, R) ) ) • Q*;/~h,c) of  semi-infinite W-differential 

Banks-Peskin forms may be considered a space of holomorphic sections of  a certain 

bundle over M (GD (sl (n, R)  ) ), which will be called Fock-plus-ghost bundle and denoted 

by FGh,c(M(GD(sI(n, R) ) ) ). Fibers of  the vector bundle FGh,c(M(GD(sl(n, R) ) ) ) 
over points x of  the flag manifold M ( G D ( s I ( n , R ) ) )  for the Gelfand-Dickey algebra 

GD(s l (n ,  N) ) will be denoted by (FGh,c)x ( M ( G D ( s l ( n ,  R) ) ) ). 
There exists a set {Px} of  natural gauge-fixing projectors 

Px : O(FGh,c( M(GD(sl(n,  II~) ) ) ) ) ~ (FGh,c)x ( M ( G D ( s I ( n , R ) ) ) )  

(here the flag manifold M ( G D ( s I ( n ,  R ) ) )  is interpreted as a space of internal gauge 

degrees of  freedom, cf. [31] ) and a set {Ix} of embedding operators 

Ix : (FGh,c)x ( M ( G D ( s l ( n , ~ ) ) ) )  H O(FGh.c(M(GD(sl (n ,R)) ) ) ) ,  

which satisfy the following two properties: 

( l )  Pxlx=id; 
~ C  ~ C  

(2) (G.A4n;(enl))+(x)Ix = O, where (G.Adn;(enl) ) + ( x )  is the natural splitting of the exact 

sequence 

A C  (x)  , G.AAn.(enl ) 0 ) ~ J ~ n ; ( e n l )  0 

' ~ - / ~ n ; ( e n l ) /  ~'A/ln;(enl) 0 

~ C  ~ C  
where (G,A4n;(enl))0(x) = {v E G.A4,;(ent ) : u (x)  = 0}. 

One may define the W-string Gauss-Manin connection in FGh,c ( M (GD(sl  (n, II~) ) ) ) 

as  
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V~,q~(x) = lim t -I ( Pxlx+tv~x)Px+t,,~x)~O - PxqO, 
t ----~ O<) 

v E Vect(M(GD(sl(n,II~)))) ,x  E M(G D (s l (n ,R) ) ) .  

This connection may be also defined by a means of W-string Kostant-Blattner- 
Sternberg pairings. Namely, the Fock space F(M(GD(sI(n,  R) ) ), FGh,c) possesses a 
(pseudo)hermitean metric (cf. [13, Juriev; 31]).  If such a metric is non-degenerate 
then it induces a metric ( . , . )  on the space O(FGh,c(M(GD(sI (n ,R)) ) ) ) .  W-string 
Kostant-Blattner-Sternberg pairings are the mappings Bx,y(.,.) from the tensor product 
of (FGh,c)x(M(GD(sI(n ,R)) ) )  and (FGh,c)y(M(GD(sI(n,R))))  to C, such that 

Bx,y(q~,~P) = (Ix~o, ly~).  
The W-string Gauss-Manin connection ~7 may be expressed via W-string Kostant- 

Blattner-Sternberg pairings as follows: 

~,,q~(x) = 0 iff Bx+tv(x).x(@(x + tv(x)  ), ¢)  = Bx.x(q~(x), ~b) + o(t) 

for all ¢ E (FGh,c)y (M(GD(sI(n,  II~)))), 

where ~/'(x) is a short notation for Px(q~). 

Defini t ion 3 (cf. [ 31 ] ). 
1. A covariantly constant section of the Fock-plus-ghost bundle 

FGh,c( M(GD(sI(n, ~ )  ) ) ) 

over the flag manifold the M(GD(s I (n , • ) ) )  for Gelfand-Dickey algebra 
GD(sl(n,  il~) ) is called Bowick-Rajeev W-vacuum. 

2. The space dual to the space of Bowick-Rajeev vacua is called the space of gauge- 
invariant Siegel W-string fields. 

Unfortunately, Bowick-Rajeev W-vacua (or, equivalently, gauge-invariant Siegel W- 
string fields) do not exist. The phenomenon of geometric non-cancellation of the Bowick- 
Rajeev W-anomaly may be considered an explanation of the fact that Gelfand-Dickey 
brackets cannot be quantized only by addition of a central term. The global struc- 
tural change of commutation relations is necessary. Let us now describe the process 
of operator cancellation of the Bowick-Rajeev anomaly, which transforms Gelfand- 
Dickey algebras or enlarged Gervais-Matsuo quasi(pseudo)algebras into WN-algebras 
(it should be mentioned that the problem of quantization of Lie quasi (pseudo)algebras 
was discussed in another context in the book of M.V. Karasev and V.P. Maslov [33] ). 
Of course, such operator cancellation does not provide us with a BRST-operator for 
WN-algebras. 

Let us consider an arbitrary point x of the flag manifold M ( G D ( s l ( n , R ) ) )  for the 
Gelfand-Dickey algebra GD(sl(n,  R)) .  Let us embed the fiber 

(FGh,c) x( M (GD (sl(n, R) ) ) ) 

of the Fock-plus-ghost bundle FGh,c(M(GD(sI(n, R ) ) ) )  over x into the space 
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O(FGh,c( M(GD(sl(n, •) ) ) ) ) 

by use of Ix. Now define the action of the real form ~A4n;<enl~ of the enlarged Gervais- 
~ C  

M a t s u o  quasi(pseudo)algebra ~.A~n;(enl ) o n  V as f o l l o w s :  

v(4,) = ex~7,,lx~, ~b ~ (VGh,c), ( M ( G D ( s l ( n , R ) ) ) ) , v  C G-Mn:<en~- 

In fact, it is not an action because the commutation relations in the real form of 
the Gervais-Matsuo quasi(pseudo)algebra are broken, moreover, the object we have 
obtained is no longer a Lie quasi(pseudo)algebra, but an ordinary algebra of operators. 

It is just remarkable that the obtained algebras are (after a complexification) just 
WN-algebras of Refs. [ 3]. 

3. Conclusions 

Now, as soon as our plan is performed, the results may be summarized. 
It appeared that the main objects of the infinite dimensional W-geometry of a second 

quantized free string are not infinite dimensional groups, Lie algebras and their homoge- 
neous spaces as they used to be in Ref. [ 1 ] but infinite dimensional Lie quasi(pseudo)- 
algebras (various modifications of the Gervais-Matsuo quasi (pseudo) algebra ~A4, c, of 

classical (infinitesimal) W-transformations), nonlinear Poisson brackets and related ge- 

ometrical structures. 
As a consequence, there exists a geometrical non-cancellation of the Bowick-Rajeev 

anomaly (the absence of gauge-invariant Siegel W-string fields). Operator cancellation 
~ C  

provides us with a transformation of classical Lie quasi(pseudo)algebras G.A4n;~e,l ) 
(central extended enlarged Gervais-Matsuo algebras) into quantum WN-algebras. 

It should be mentioned that, since realistic W-string field theory is essentially the the- 
ory of a self-interacting string field (see e.g. Ref. [41]),  free W-string field theory may 
be considered only as a starting point of the perturbation approach to it. Consequently, 
the infinite dimensional W-geometry of a second quantized free string may be also 
regarded as a zero-approximation of the noncommutative geometry of a self-interacting 

W-string field. 
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